#### INFORMATION THEORY & CODING

Week 9: Channel Code 2

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

November 9, 2020



#### Review

 Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X;Y).$$

#### Examples

- Binary symmetric channel: C = 1 H(p)
- Binary erasure channel:  $C = 1 \alpha$
- ullet Symmetric channel:  $C = \log |\mathcal{Y}| H$  (row of trans. matrix)



## Channel Code

#### Definition

An (M,n) code for the channel  $(\mathcal{X},p(y|x),\mathcal{Y})$  consists of :

- 1. An index set  $\{1, 2, \dots, M\}$  representing messages.
- 2. An encoding function  $X^n:\{1,2,\ldots,M\}\to\mathcal{X}^n$ , yielding codewords  $x^n(1),x^n(2),\ldots,x^n(M)$ . The set of codewords is called codebook.
- 3. A decoding function  $g: \mathcal{Y}^n \to \{1, 2, \dots, M\}$ .

The rate R of an (M, n) code is

$$R = rac{\log M}{n}$$
 bit per transmission

On the other hand, we usually write

$$M = \lceil 2^{nR} \rceil$$



## Channel Code

#### Definition

An (M, n) code for the channel  $(\mathcal{X}, p(y|x), \mathcal{Y})$  consists of :

- 1. An index set  $\{1, 2, \dots, M\}$  representing messages.
- 2. An encoding function  $X^n:\{1,2,\ldots,M\}\to\mathcal{X}^n$ , yielding codewords  $x^n(1),x^n(2),\ldots,x^n(M)$ . The set of codewords is called codebook.
- 3. A decoding function  $g: \mathcal{Y}^n \to \{1, 2, \dots, M\}$ .

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$
 bit per transmission

On the other hand, we usually write

$$M = \left\lceil 2^{nR} \right\rceil$$



#### Performance Metric

Conditional probability of error:

$$\lambda_i = \Pr[g(Y_n) \neq i | X^n = x^n(i)] = \sum_{y^n} p(y^n | x^n(i)) I(g(y^n) \neq i)$$

- Maximal probability of error:  $\lambda^{(n)} = \max_{i \in \{1,2,...,M\}} \lambda_i$
- $\bullet$  Decoding error probability:  $\Pr[W \neq g(Y^n)] = \sum_i \lambda_i \Pr[W = i]$
- Arithmetric average probability of error:

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i, \quad P_e^{(n)} \le \lambda^{(n)}$$

If W is uniformly distributed:

 $P_e^{(n)} = \Pr[W \neq g(Y^n)]$  Decoding error probability



#### Achievable Rate

• A rate R is achievable,

if there exists a sequence of codes with rate R and codeword length n, denoted as ( $\lceil 2^{nR} \rceil$ , n), such that the maximal probability of error  $\lambda^{(n)} \to 0$  as  $n \to \infty$ .

Recall that

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$
 bit per transmission.



# Joint Typical Set

• Joint typicality. Given two i.i.d. random variable sequences  $X^n$  and  $Y^n$ , the set of jointly typical sequences is

$$\begin{split} A_{\epsilon}^{(n)} = & \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \\ & \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right\} \end{split}$$

where  $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$ .



## Joint AEP

• **Joint AEP** Let  $(X^n, Y^n)$  be the sequences of length n drawn i.i.d. according to  $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$ , then:

1. 
$$\Pr\left[(X^n,Y^n)\in A_{\epsilon}^{(n)}\right]\to 1 \text{ as } n\to\infty.$$

$$2. \left| A_{\epsilon}^{(n)} \right| \le 2^{n(H(X,Y)+\epsilon)}.$$

3. If  $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$ , then

$$\Pr\left[\left(\tilde{X}^n, \tilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right] \le 2^{-n(I(X;Y) - 3\epsilon)}.$$

Please refer to p196 for the proof (proof of Theorem 7.6.1)



## **Channel Coding Theorem**

## Theorem (Channel coding theorem)

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of  $(2^{nR}, n)$  codes with maximum probability of error  $\lambda^{(n)} \to 0$ .

Conversely, any sequence of  $(2^{nR},n)$  codes with  $\lambda^{(n)} \to 0$  must have R < C.

Achievability: when R < C, there exists zero-error code.

Converse: zero-error codes must have  $R \leq C$ .



#### Random Codebook

• Generate a  $(2^{nR}, n)$  code at random according to p(x), where p(x) is the capacity achieving distribution. The  $2^{nR}$  are the rows of a matrix:

$$C = \begin{bmatrix} x_1(1) & x_2(1) & \dots & x_n(1) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \dots & x_n(2^{nR}) \end{bmatrix}.$$

Each entry is generated i.i.d. according to p(x).

 $\bullet$  Encoding: map the message  $w=\{1,2,3,\dots,2^{nR}\}$  to codeword  $[x_1(w),x_2(w),\dots,x_n(w)],$  i.e.

$$C \to [x_1(w), x_2(w), \dots, x_n(w)] = x_c^n(w), w = 1, 2, \dots, 2^{nR}$$

 We shall prove the average detection error probability (over all codebooks) tends to zero as n increase, which implies that there must exists one good codebook whose detection error probability tends to zero

# Jointly Typical Decoding

- ullet Decoding: finds the only  $\hat{w}$  such that  $(x_{\mathcal{C}}^n(\hat{w}),Y_{\mathcal{C}}^n)$  is jointly typical.
- Decoding error: Suppose message 1 is sent to via codeword  $x_{\mathcal{C}}^n(1)$  and  $Y_{\mathcal{C}}^n$  is the received signal, the possible decoding error events include:
  - $(x_{\mathcal{C}}^n(1), Y_{\mathcal{C}}^n)$  is not joint typical.
  - $(x_{\mathcal{C}}^n(i), Y_{\mathcal{C}}^n)$  is joint typical  $(i = 2, 3, \dots, 2^{nR})$ .
- Idea of proof: According to joint AEP, since  $x_{\mathcal{C}}^n(1)$  and  $Y_{\mathcal{C}}^n$  are generated according to joint distribution  $p(x^n,y^n)$ , the chance of the first event is small. Moreover, since  $Y_{\mathcal{C}}^n$  is generated independently of  $x_{\mathcal{C}}^n(i)$ , the total chance of the second event is also small.



ullet A message W is chosen according to a uniform distribution

$$\Pr[W = w] = 2^{-nR},$$

for  $w = 1, 2, \dots, 2^{nR}$ . The w-th codeword  $x_{\mathcal{C}}^n(w)$ , corresponding to the w-th row of  $\mathcal{C}$ , is sent over the channel.

• The receiver receives a sequence  $Y_{\mathcal{C}}^n$  according to the distribution according to the distribution

$$\Pr\left(y_{\mathcal{C}}^{n}|x_{\mathcal{C}}^{n}(w)\right) = \prod_{i=1}^{n} \Pr\left(y_{i,\mathcal{C}}|x_{i,\mathcal{C}}(w)\right),$$

and guesses which message was sent using jointly typical decoding.



• Let  $\varepsilon = \{\hat{W}(Y^n) \neq W\}$  denote the error event,  $\lambda_w(\mathcal{C})$  be the error probability of the w-th codeword of code  $\mathcal{C}$ . The average probability of error, over all codewords and all codebooks, is:

$$\Pr(\varepsilon) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) P_e^{(n)}(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_w(\mathcal{C})$$
$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_w(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}),$$

where  $\sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_w(\mathcal{C})$ ,  $\forall w \neq 1$ .



• Let  $Y_{\mathcal{C}}^n$  be the received signal for  $x_{\mathcal{C}}^n(1)$ 

$$e_i(\mathcal{C}) = \{(x^n_{\mathcal{C}}(i), Y^n_{\mathcal{C}}) \in A^{(n)}_{\epsilon}\}, i \in \{1, 2, \dots, 2^{nR}\},$$
 and  $e^c_i(\mathcal{C}) = !e_i(\mathcal{C})$ . Thus, 
$$\Pr[\varepsilon] = \sum_i \Pr(\mathcal{C}) \setminus \{(\mathcal{C}) - \sum_i \Pr(\mathcal{C}) \Pr[e^c_i(\mathcal{C}) + \{(1)^{2^{nR}}e_i(\mathcal{C})\}] \setminus \{(1)^{2^{nR}}e_i(\mathcal{C})\} \setminus \{(1)^{2^{nR}}e_i(\mathcal$$

$$\Pr[\varepsilon] = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr\left[e_1^c(\mathcal{C}) \cup (\bigcup_{i=2}^{2^{nR}} e_i(\mathcal{C})) \middle| W = 1\right]$$

$$\leq \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C}) | W = 1] + \sum_{\mathcal{C}} \Pr(\mathcal{C}) \sum_{i=2}^{2^{nR}} \Pr[e_i(\mathcal{C}) | W = 1]$$

$$= \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C}) | W = 1] + \sum_{i=2}^{2^{nR}} \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_i(\mathcal{C}) | W = 1]$$



$$\begin{split} &\sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C})|W=1] \\ &= \sum_{\mathcal{C}} \left( \prod_{i=1}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \right) \Pr[e_1^c(\mathcal{C})|W=1] \\ &= \sum_{x_1^n} \sum_{\mathcal{C}: x_{\mathcal{C}}^n(1) = x_1^n} \prod_{i=1}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &= \sum_{x_1^n} \Pr(x_1^n) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &\times \sum_{\mathcal{C}: x_{\mathcal{C}}^n(1) = x_1^n} \prod_{i=2}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \\ &= \sum_{x_1^n} \Pr(x_1^n) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &= \Pr(X_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) = \Pr(E_1^c|W=1) \end{split}$$

Similarly,

$$\sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1(\mathcal{C})|W=1] = \Pr(X_i^n \text{ and } Y^n \text{ are joint typical}|W=1)$$
$$= \Pr(E_i|W=1)$$

As a result,

$$\Pr[\varepsilon] \le \Pr[E_1^c | W = 1] + \sum_{i=2}^{2^{nR}} \Pr[E_i | W = 1]$$



• By the joint AEP,  $\Pr[E_1^c|W=1] \leq \epsilon$  for n sufficiently large. By the code generation process,  $X^n(1)$  and  $X^n(i)$  are independent for  $i \neq 1$ , so are  $Y^n$  and  $X^n(i)$ . Hence the probability that  $X^n(i)$  and  $Y^n$  are jointly typical is  $< 2^{-n(I(X;Y)-3\epsilon)}$  by the joint AEP.

$$\begin{split} \Pr[\varepsilon] & \leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y) - 3\epsilon)} \\ & = \epsilon + (2^{nR} - 1) 2^{-n(I(X;Y) - 3\epsilon)} \\ & \leq \epsilon + 2^{3n\epsilon} 2^{-n(I(X;Y) - R)} \\ & \leq 2\epsilon \quad \text{for } R \leq I(X;Y) - 4\epsilon \text{ and sufficiently large n} \end{split}$$

Hence, if R < I(X;Y), we can choose  $\epsilon$  and n so that the average probability of error, over codebooks and codewords, is less than  $2\epsilon$ .

• Since p(x) is the capacity achieving distribution, R < I(X;Y)beacomes R < C.

• Get rid of the average over codebooks. Since the average probability of error is  $\leq 2\epsilon$ , there exists at least one codebook  $\mathcal{C}^*$  with a small average probability of error  $(\Pr(\varepsilon|\mathcal{C}^*) \leq 2\epsilon)$ . Since we have chosen  $\hat{W}$  according to a uniform distribution, we have

$$\Pr(\varepsilon|\mathcal{C}^*) = \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} \lambda_i(\mathcal{C}^*).$$

• Throw away the worst half of the codewords in the best codebook  $\mathcal{C}^*$ . We have  $\Pr(\varepsilon|\mathcal{C}^*) \leq \frac{1}{2^{nR}} \sum \lambda_i(\mathcal{C}^*) \leq 2\epsilon$ . This implies that at least half the indices i and their associated codewords  $X^n(I)$  must have conditional probability of error  $\lambda_i \leq 4\epsilon$ . If we reindex the codewords, we have  $2^{nR-1}$  codewords. The rate now is  $R' = R - \frac{1}{n}$  with maximal probability of error  $\lambda^{(n)} \leq 4\epsilon$ .

## Proof for the converse

• The index W is uniformly distributed on the set  $\mathcal{W}=\{1,2,\dots,2^{nR}\}$ , and the sequence  $Y^n$  is related to W. From  $Y^n$ , we estimate the index W as  $\hat{W}=g(Y^n)$ . Thus,  $W\to X^n(W)\to Y^n\to \hat{W}$  forms a Markov chain.

Data processing inequality:  $I(W; \hat{W}) \leq I(X^n(W); Y^n)$ 

## Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook  $\mathcal C$  and the input message W uniformly distributed over  $2^{nR}$ , we have

$$H(W|\hat{W}) \le 1 + P_e^{(n)} nR$$



## Proof for the converse

• The index W is uniformly distributed on the set  $\mathcal{W} = \{1, 2, \dots, 2^{nR}\}$ , and the sequence  $Y^n$  is related to W. From  $Y^n$ , we estimate the index W as  $\hat{W} = g(Y^n)$ . Thus,  $W \to X^n(W) \to Y^n \to \hat{W}$  forms a Markov chain.

Data processing inequality:  $I(W; \hat{W}) \leq I(X^n(W); Y^n)$ 

## Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook  $\mathcal C$  and the input message W uniformly distributed over  $2^{nR}$ , we have

$$H(W|\hat{W}) \le 1 + P_e^{(n)} nR.$$



#### Lemma

Let  $Y^n$  be the result of passing  $X^n$  through a discrete memoryless channel of capacity C. Then

$$I(X^n;Y^n) \leq nC, \quad \textit{for all} \quad p(x^n).$$

$$\begin{split} I(X^n;Y^n) &= H(Y^n) - H(Y^n|X^n) = H(Y^n) - \sum_{i=1}^n H(Y_i|Y_1,\dots\\ &= H(Y^n) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{memoryless} \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{independence bound} \\ &= \sum_{i=1}^n I(X_i|Y_i) \leq nC \end{split}$$

#### Lemma

Let  $Y^n$  be the result of passing  $X^n$  through a discrete memoryless channel of capacity C. Then

$$I(X^n; Y^n) \le nC$$
, for all  $p(x^n)$ .

## Proof.

$$\begin{split} I(X^n;Y^n) &= H(Y^n) - H(Y^n|X^n) = H(Y^n) - \sum_{i=1}^n H(Y_i|Y_1,\dots,Y_{i-1},X^n) \\ &= H(Y^n) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{memoryless} \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{independence bound} \\ &= \sum_{i=1}^n I(X_i|Y_i) \leq nC \end{split}$$

## Proof for the converse

#### Proof.

Converse to channel coding theorem: Since  ${\cal W}$  has a uniform distribution, we have

$$\begin{split} nR &= H(W) = H(W|\hat{W}) + I(W;\hat{W}) \\ &\leq 1 + P_e^{(n)} nR + I(W;\hat{W}) \quad \text{Fano's inequality} \\ &\leq 1 + P_e^{(n)} nR + I(X^n;Y^n) \quad \text{data-processing inequality} \\ &\leq 1 + P_e^{(n)} nR + nC \quad \text{Lemma 7.9.2} \end{split}$$

We obtain  $R \leq P_e^{(n)} + \frac{1}{n} + C$ . Letting  $n \to \infty$ , we have  $R \leq C$  .



# Reading & Homework

- Reading: Chapter 7: 7.6-7.10
- Homework: Problems 7.15, 7.31.

