
INFORMATION THEORY & CODING
Week 9 : Channel Code 2

Dr. Rui Wang

Department of Electrical and Electronic Engineering

Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

November 9, 2020

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING November 9, 2020 1 / 21



Review

Channel capacity. The logarithm of the number of distinguishable
inputs is given by

C = max
p(x)

I(X;Y ).

Examples

Binary symmetric channel: C = 1−H(p)
Binary erasure channel: C = 1− α
Symmetric channel: C = log |Y| −H (row of trans. matrix)
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Channel Code

Definition

An (M,n) code for the channel (X , p(y|x),Y) consists of :
1. An index set {1, 2, . . . ,M} representing messages.
2. An encoding function Xn : {1, 2, . . . ,M} → X n, yielding codewords
xn(1), xn(2), . . . , xn(M). The set of codewords is called codebook.
3. A decoding function g : Yn → {1, 2, . . . ,M}.

The rate R of an (M,n) code is

R =
logM

n
bit per transmission

On the other hand, we usually write

M =
⌈
2nR

⌉
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Performance Metric

Conditional probability of error:

λi = Pr[g(Yn) 6= i|Xn = xn(i)] =
∑
yn

p
(
yn|xn(i)

)
I
(
g(yn) 6= i

)
Maximal probability of error: λ(n) = maxi∈{1,2,...,M} λi

Decoding error probability: Pr[W 6= g(Y n)] =
∑

i λi Pr[W = i]

Arithmetric average probability of error:

P (n)
e =

1

M

M∑
i=1

λi, P (n)
e ≤ λ(n)

If W is uniformly distributed:

P (n)
e = Pr[W 6= g(Y n)] Decoding error probability
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Achievable Rate

A rate R is achievable,

if there exists a sequence of codes with rate R and codeword length n,
denoted as (

⌈
2nR

⌉
, n), such that the maximal probability of error

λ(n) → 0 as n→∞.

Recall that

The rate R of an (M,n) code is

R =
logM

n
bit per transmission.
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Joint Typical Set

Joint typicality. Given two i.i.d. random variable sequences Xn and
Y n, the set of jointly typical sequences is

A(n)
ε =

{
(xn, yn) ∈ X n × Yn :∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ < ε

}
where p(xn, yn) =

∏n
i=1 p(xi, yi).
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Joint AEP

Joint AEP Let (Xn, Y n) be the sequences of length n drawn i.i.d.
according to p(xn, yn) =

∏n
i=1 p(xi, yi), then:

1. Pr
[
(Xn, Y n) ∈ A(n)

ε

]
→ 1 as n→∞.

2.
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(X,Y )+ε).

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn), then

Pr
[(
X̃n, Ỹ n

)
∈ A(n)

ε

]
≤ 2−n(I(X;Y )−3ε).

Please refer to p196 for the proof (proof of Theorem 7.6.1)
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Channel Coding Theorem

Theorem (Channel coding theorem)

For a discrete memoryless channel, all rates below capacity C are
achievable. Specifically, for every rate R < C, there exists a sequence of
(2nR, n) codes with maximum probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must have
R < C.

Achievability: when R < C, there exists zero-error code.
Converse: zero-error codes must have R ≤ C.
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Random Codebook

Generate a (2nR, n) code at random according to p(x), where p(x) is
the capacity achieving distribution. The 2nR are the rows of a matrix:

C =

 x1(1) x2(1) . . . xn(1)
...

...
. . .

...
x1(2

nR) x2(2
nR) . . . xn(2

nR)

 .
Each entry is generated i.i.d. according to p(x).

Encoding: map the message w = {1, 2, 3, . . . , 2nR} to codeword
[x1(w), x2(w), . . . , xn(w)], i.e.

C → [x1(w), x2(w), . . . , xn(w)] = xnC(w), w = 1, 2, . . . , 2nR

We shall prove the average detection error probability (over all
codebooks) tends to zero as n increase, which implies that there must
exists one good codebook whose detection error probability tends to
zero
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Jointly Typical Decoding

Decoding: finds the only ŵ such that (xnC(ŵ), Y
n
C ) is jointly typical.

Decoding error: Suppose message 1 is sent to via codeword xnC(1) and
Y n
C is the received signal, the possible decoding error events include:

(xnC(1), Y
n
C ) is not joint typical.

(xnC(i), Y
n
C ) is joint typical (i = 2, 3, . . . , 2nR).

Idea of proof: According to joint AEP, since xnC(1) and Y n
C are

generated according to joint distribution p(xn, yn), the chance of the
first event is small. Moreover, since Y n

C is generated independently of
xnC(i), the total chance of the second event is also small.
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Proof for achievability

A message W is chosen according to a uniform distribution

Pr[W = w] = 2−nR,

for w = 1, 2, . . . , 2nR. The w-th codeword xnC(w), corresponding to
the w-th row of C, is sent over the channel.

The receiver receives a sequence Y n
C according to the distribution

according to the distribution

Pr
(
ynC |xnC(w)

)
=

n∏
i=1

Pr
(
yi,C |xi,C(w)

)
,

and guesses which message was sent using jointly typical decoding.
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Proof for achievability

Let ε = {Ŵ (Y n) 6=W} denote the error event, λw(C) be the error
probability of the w-th codeword of code C. The average probability
of error, over all codewords and all codebooks, is:

Pr(ε) =
∑
C

Pr(C)P (n)
e (C) =

∑
C

Pr(C) 1

2nR

2nR∑
w=1

λw(C)

=
1

2nR

2nR∑
w=1

∑
C

Pr(C)λw(C) =
∑
C

Pr(C)λ1(C),

where
∑
C Pr(C)λ1(C) =

∑
C Pr(C)λw(C), ∀w 6= 1.
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Proof for achievability

Let Y n
C be the received signal for xnC(1)

ei(C) = {(xnC(i), Y n
C ) ∈ A(n)

ε }, i ∈ {1, 2, . . . , 2nR},

and eci (C) =!ei(C). Thus,

Pr[ε] =
∑
C

Pr(C)λ1(C) =
∑
C

Pr(C) Pr
[
ec1(C) ∪ (∪2nR

i=2 ei(C))
∣∣∣W = 1

]

≤
∑
C

Pr(C) Pr[ec1(C)|W = 1] +
∑
C

Pr(C)
2nR∑
i=2

Pr[ei(C)|W = 1]

=
∑
C

Pr(C) Pr[ec1(C)|W = 1] +
2nR∑
i=2

∑
C

Pr(C) Pr[ei(C)|W = 1]
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Proof for achievability∑
C

Pr(C) Pr[ec1(C)|W = 1]

=
∑
C

(2nR∏
i=1

Pr(xnC(i))
)
Pr[ec1(C)|W = 1]

=
∑
xn
1

∑
C:xn

C (1)=xn
1

2nR∏
i=1

Pr(xnC(i)) Pr(x
n
1 and Y n are not joint typical|W = 1)

=
∑
xn
1

Pr(xn1 ) Pr(x
n
1 and Y n are not joint typical|W = 1)

×
∑

C:xn
C (1)=xn

1

2nR∏
i=2

Pr(xnC(i))

=
∑
xn
1

Pr(xn1 ) Pr(x
n
1 and Y n are not joint typical|W = 1)

=Pr(Xn
1 and Y n are not joint typical|W = 1) = Pr(Ec

1|W = 1)
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Proof for achievability

Similarly,∑
C

Pr(C) Pr[e1(C)|W = 1] = Pr(Xn
i and Y n are joint typical|W = 1)

= Pr(Ei|W = 1)

As a result,

Pr[ε] ≤ Pr[Ec1|W = 1] +

2nR∑
i=2

Pr[Ei|W = 1]
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Proof for achievability

By the joint AEP, Pr[Ec1|W = 1] ≤ ε for n sufficiently large. By the
code generation process, Xn(1) and Xn(i) are independent for i 6= 1,
so are Y n and Xn(i). Hence the probability that Xn(i) and Y n are
jointly typical is ≤ 2−n(I(X;Y )−3ε) by the joint AEP.

Pr[ε] ≤ ε+
2nR∑
i=2

2−n(I(X;Y )−3ε)

= ε+ (2nR − 1)2−n(I(X;Y )−3ε)

≤ ε+ 23nε2−n(I(X;Y )−R)

≤ 2ε for R ≤ I(X;Y )− 4ε and sufficiently large n

Hence, if R < I(X;Y ), we can choose ε and n so that the average
probability of error, over codebooks and codewords, is less than 2ε.

Since p(x) is the capacity achieving distribution, R < I(X;Y )
beacomes R < C.

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING November 9, 2020 16 / 21



Proof for achievability

Get rid of the average over codebooks. Since the average probability
of error is ≤ 2ε, there exists at least one codebook C∗ with a small
average probability of error (Pr(ε|C∗) ≤ 2ε). Since we have chosen Ŵ
according to a uniform distribution, we have

Pr(ε|C∗) = 1

2nR

2nR∑
i=1

λi(C∗).

Throw away the worst half of the codewords in the best codebook C∗.
We have Pr(ε|C∗) ≤ 1

2nR

∑
λi(C∗) ≤ 2ε. This implies that at least

half the indices i and their associated codewords Xn(I) must have
conditional probability of error λi ≤ 4ε. If we reindex the codewords,
we have 2nR−1 codewords. The rate now is R

′
= R− 1

n with

maximal probability of error λ(n) ≤ 4ε.
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Proof for the converse

The index W is uniformly distributed on the set W = {1, 2, . . . , 2nR},
and the sequence Y n is related to W . From Y n, we estimate the
index W as Ŵ = g(Y n). Thus, W → Xn(W )→ Y n → Ŵ forms a
Markov chain.

Data processing inequality: I(W ; Ŵ ) ≤ I(Xn(W );Y n)

Lemma (Fano’s inequality)

For a discrete memoryless channel with a codebook C and the input
message W uniformly distributed over 2nR, we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR.
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Lemma (Fano’s inequality)

For a discrete memoryless channel with a codebook C and the input
message W uniformly distributed over 2nR, we have
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Lemma

Let Y n be the result of passing Xn through a discrete memoryless channel
of capacity C. Then

I(Xn;Y n) ≤ nC, for all p(xn).

Proof.

I(Xn;Y n) = H(Y n)−H(Y n|Xn) = H(Y n)−
n∑
i=1

H(Yi|Y1, . . . , Yi−1, Xn)

= H(Y n)−
n∑
i=1

H(Yi|Xi) memoryless

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi) independence bound

=

n∑
i=1

I(Xi|Yi) ≤ nC
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Proof for the converse

Proof.

Converse to channel coding theorem: Since W has a uniform distribution,
we have

nR = H(W ) = H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(W ; Ŵ ) Fano’s inequality

≤ 1 + P (n)
e nR+ I(Xn;Y n) data-processing inequality

≤ 1 + P (n)
e nR+ nC Lemma 7.9.2

We obtain R ≤ P (n)
e + 1

n + C.
Letting n→∞, we have R ≤ C .
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Reading & Homework

Reading: Chapter 7: 7.6-7.10

Homework: Problems 7.15, 7.31.
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