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Review

@ Channel capacity. The logarithm of the number of distinguishable
inputs is given by

C =maxI(X;Y).

p(z)

o Examples

o Binary symmetric channel: C =1 — H(p)
e Binary erasure channel: C=1—«
o Symmetric channel: C'=log|Y| — H (row of trans. matrix)
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Channel Code

Definition

An (M, n) code for the channel (X, p(y|x),)) consists of :

1. An index set {1,2,..., M} representing messages.

2. An encoding function X™: {1,2,..., M} — X", yielding codewords
z"(1),2"(2),...,2™(M). The set of codewords is called codebook.

3. A decoding function g : V" — {1,2,..., M}.
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Channel Code

Definition

An (M, n) code for the channel (X, p(y|x),)) consists of :

1. An index set {1,2,..., M} representing messages.

2. An encoding function X™: {1,2,..., M} — X", yielding codewords
x™(1),2™(2),...,2™(M). The set of codewords is called codebook.

3. A decoding function g : V" — {1,2,..., M}.

The rate R of an (M, n) code is

_logM

R bit per transmission

On the other hand, we usually write

M = [2"F]
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Performance Metric

o Conditional probability of error:

N = Prlg(Y) # ilX" = 2" ()] = > p(y"[2" () 1 (9(4") #1)

y’n

@ Maximal probability of error: A = maX;e(12,. .M} i
@ Decoding error probability: Pr[W # g(Y™)] = >, A Pr[W = i

@ Arithmetric average probability of error:
M
(n) — — . (n) (n)
P = ;:1 Ai, PV

If W is uniformly distributed:

P = Pr[W # g(Y™)] Decoding error probability
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Achievable Rate

@ A rate R is achievable,

if there exists a sequence of codes with rate R and codeword length n,
denoted as ([2"f], n), such that the maximal probability of error
A" — 0 as n — oco.

Recall that
The rate R of an (M, n) code is

R_ log M

bit per transmission.
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Joint Typical Set

@ Joint typicality. Given two i.i.d. random variable sequences X" and
Y™, the set of jointly typical sequences is

A :{(x",y”) eXT xY":
1
—Hlogp(z") - H(X)' <e

1
o logaly) ~ HOY) <

—% log p(z", y") — H(X’Y)' < 6}

where p(z™,y™) = [T p(z4, yi).
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Joint AEP

e Joint AEP Let (X™,Y") be the sequences of length n drawn i.i.d.
according to p(z",y") = [, p(xi, yi), then:

1. Pr [(X”,Y”) e AE")] S 1asn— .

5 ‘AE") < gn(H(X.Y)+e),

Pr [(Xn’ffn> e Agn)} < an(I(X;Y)f:}G).
Please refer to p196 for the proof (proof of Theorem 7.6.1)
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Channel Coding Theorem

Theorem (Channel coding theorem)

For a discrete memoryless channel, all rates below capacity C' are
achievable. Specifically, for every rate R < C, there exists a sequence of
(2", n) codes with maximum probability of error \(™) — 0.

Conversely, any sequence of (2%, n) codes with A" — 0 must have
R<C.

Achievability: when R < C, there exists zero-error code.
Converse: zero-error codes must have R < C.
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Random Codebook

@ Generate a (2", n) code at random according to p(z), where p(z) is
the capacity achieving distribution. The 2™ are the rows of a matrix:
x1(1) xo(l) ... mp(1)

51(2F) 2o(@B) . (2R

Each entry is generated i.i.d. according to p(x).

e Encoding: map the message w = {1,2,3,...,2"%} to codeword
[z1(w), z2(w), ..., zn(w)], ie.
C — [z1(w), z2(w),. .., zo(w)] = 2B (w),w = 1,2,...,2"

@ We shall prove the average detection error probability (over all
codebooks) tends to zero as n increase, which implies that there must
exists one good codebook whose detection error probability tends to
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Jointly Typical Decoding

@ Decoding: finds the only @ such that (zf(w),Y") is jointly typical.

@ Decoding error: Suppose message 1 is sent to via codeword (1) and
Y/ is the received signal, the possible decoding error events include:

o (zg(1),Y2") is not joint typical.
o (x2(i), Y2 is joint typical (i = 2,3,...,2"%).

o Idea of proof: According to joint AEP, since 23(1) and Y;' are
generated according to joint distribution p(2™,y™), the chance of the
first event is small. Moreover, since Y is generated independently of
x( (i), the total chance of the second event is also small.
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Proof for achievability

@ A message W is chosen according to a uniform distribution
Pr[W = w] = 271,

forw=1,2,...,2"% The w-th codeword xf(w), corresponding to
the w-th row of C, is sent over the channel.

@ The receiver receives a sequence Y;' according to the distribution
according to the distribution

Pr (yc|:cc ) HPY (yzC’sz( ))

and guesses which message was sent using jointly typical decoding.
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Proof for achievability

o Let e = {IV(Y™) # W} denote the error event, A, (C) be the error
probability of the w-th codeword of code C. The average probability
of error, over all codewords and all codebooks, is:

2nR
:zC:Pr(C) ZPr 2nR Z)\
2nR
= i 2D PH(C =Y PN (0),
w=1 C C

where Y0 Pr(C)A1(€) = Ye Pr(C)Au (C), Yu # 1.
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Proof for achievability

o Let Y be the received signal for (1)
ei(C) = {(x¢ (i), Y&') € Al}i e {1,2,..., 2"},

and €f(C) =le;(C). Thus,

=3 PrOM(C) = 3 Pr(C) Pr [ef(c’) U (U se(C ))‘W - 1]
C C

onR
<ZPr C)|W =1] —l—ZPr X:PreZ )W = 1]
27LR
—ZPr ) Prlef (C)|W = 1] —l—ZZPr ) Prle;(C)|[W = 1]
=2 C
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Proof for achievability

ZPr ) Pr[ef (C)|W = 1]

2nR

=3 (T Prte@) Priesc)w = 1]
C =1

72 Z H Pr(zz (i) Pr(«T and Y™ are not joint typical|lV = 1)
zt Cixd(1)=a} i=1
:ZPr (7)) Pr(z] and Y™ are not joint typical|W = 1)
x
2nR
x> I Prga)
C:xg(1)=al 1=2
= ZPr(x?) Pr(z] and Y™ are not joint typical|lW = 1)
@7
=Pr(X7 and Y" are not joint typical|l/W = 1) = Pr(Ef|W = 1) P
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Proof for achievability

@ Similarly,

ZPr Prle; (C)|W = 1] = Pr(X;* and Y™ are joint typical|l/W = 1)

= Pr(E;|W =1)
@ As a result,
2nR
Prle] < Pr[E{|W = 1]+ Y Pr[E[W =1]
=2
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Proof for achievability

e By the joint AEP, Pr[ES|WW = 1] < € for n sufficiently large. By the
code generation process, X" (1) and X" (i) are independent for ¢ # 1,
so are Y™ and X" (7). Hence the probability that X™ (i) and Y™ are
jointly typical is < 27 U(X:Y)=3¢) by the joint AEP.

onR
PI‘[&] < €+Z2—n(I(X;Y)—36)
=2
— e+ (2nR - 1)2—n(I(X;Y)—3e)

<e+ 231162771([(X;Y)7R)
<2 for R < I(X;Y) — 4e and sufficiently large n

Hence, if R < I(X;Y'), we can choose ¢ and n so that the average
probability of error, over codebooks and codewords, is less than 2e.

@ Since p(z) is the capacity achieving distribution, R < I(X;Y)
beacomes R < C. PER Y
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Proof for achievability

@ Get rid of the average over codebooks. Since the average probability
of error is < 2¢, there exists at least one codebook C* with a small
average probability of error (Pr(e|C*) < 2¢). Since we have chosen T
according to a uniform distribution, we have

QnR

* 1 *
Pr(eC*) = ooz > x(C).
=1

@ Throw away the worst half of the codewords in the best codebook C*.
We have Pr(e|C*) < Qn% > Ai(C*) < 2e. This implies that at least
half the indices i and their associated codewords X" () must have
conditional probability of error A\; < 4e. If we reindex the codewords,
we have 2"7~1 codewords. The rate now is R = R — % with

maximal probability of error \(") < 4e.
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Proof for the converse

e The index W is uniformly distributed on the set W = {1,2,..., 2"},
and the sequence Y is related to W. From Y, we estimate the

index W as W = g(Y™). Thus, W — X"(W) — Y™ — W forms a
Markov chain.

Data processing inequality: I(W;W) < I(X"(W);Y™)
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Proof for the converse

e The index W is uniformly distributed on the set W = {1,2,..., 2"},
and the sequence Y is related to W. From Y, we estimate the

index W as W = g(Y™). Thus, W — X"(W) — Y™ — W forms a
Markov chain.

Data processing inequality: I(W;W) < I(X"(W);Y™)

Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook C and the input
message W uniformly distributed over 2", we have

HW|W) <1+ P™nR.
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Let Y™ be the result of passing X™ through a discrete memoryless channel
of capacity C. Then
I(X™Y"™) <nC, forall p(z").
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Lemma

Let Y™ be the result of passing X™ through a discrete memoryless channel
of capacity C. Then
I(X™Y"™) <nC, forall p(z").

I(X™Y™) = H(Y") - H(Y"|X") = ZHY%--- i1, X7)

=H(Y") - > H(Y;|X;) memoryless

=1
< ZH ZH (Y;|X;) independence bound
i=1 =1
=> I(X;|Y;) <nC

i=1
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Proof for the converse

Proof.

Converse to channel coding theorem: Since W has a uniform distribution,
we have

nR=HW)=HW|W)+I(W;W)
<1+ Pe(”)nR + (W, W) Fano's inequality
<14 P™pR+I(X™Y") data-processing inequality
<14 P™nR+nC Lemma 7.9.2

We obtain R < P™ + % +C.
Letting n — oo, we have R < C' .

Ol
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Reading & Homework

@ Reading: Chapter 7: 7.6-7.10
@ Homework: Problems 7.15, 7.31.
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